The netrin 1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of corticospinal tract axons.

نویسندگان

  • Jacqueline H Finger
  • Rod T Bronson
  • Belinda Harris
  • Kenneth Johnson
  • Stefan A Przyborski
  • Susan L Ackerman
چکیده

Migrating axons require the correct presentation of guidance molecules, often at multiple choice points, to find their target. Netrin 1, a bifunctional cue involved in both attracting and repelling axons, is involved in many cell migration and axon pathfinding processes in the CNS. The netrin 1 receptor DCC and its Caenorhabditis elegans homolog UNC-40 have been implicated in directing the guidance of axons toward netrin sources, whereas the C. elegans UNC-6 receptor, UNC-5 is necessary for migrations away from UNC-6. However, a role of vertebrate UNC-5 homologs in axonal migration has not been demonstrated. We demonstrate that the Unc5h3 gene product, shown previously to regulate cerebellar granule cell migrations, also controls the guidance of the corticospinal tract, the major tract responsible for coordination of limb movements. Furthermore, we show that corticospinal tract fibers respond differently to loss of UNC5H3. In addition, we observe corticospinal tract defects in mice homozygous for a spontaneous mutation that truncates the Dcc transcript. Postnatal day 0 netrin 1 mutant mice also demonstrate corticospinal tract abnormalities. Last, interactions between the Dcc and Unc5h3 mutations were observed in gene dosage experiments. This is the first evidence of an involvement in axon guidance for any member of the vertebrate unc-5 family and confirms that both the cellular and axonal guidance functions of C. elegans unc-5 have been conserved in vertebrates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus.

During development, multiple guidance cues direct the formation of appropriate synaptic connections. Factors that guide developing axons are known for various pathways throughout the mammalian brain; however, signals necessary to establish auditory connections are largely unknown. In the auditory brainstem the neurons whose axons traverse the midline in the ventral acoustic stria (VAS) are prim...

متن کامل

Netrin-3, a mouse homolog of human NTN2L, is highly expressed in sensory ganglia and shows differential binding to netrin receptors.

The netrins comprise a small phylogenetically conserved family of guidance cues important for guiding particular axonal growth cones to their targets. Two netrin genes, netrin-1 and netrin-2, have been described in chicken, but in mouse so far a single netrin gene, an ortholog of chick netrin-1, has been reported. We report the identification of a second mouse netrin gene, which we name netrin-...

متن کامل

Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projection.

The thalamocortical axon (TCA) projection originates in dorsal thalamus, conveys sensory input to the neocortex, and has a critical role in cortical development. We show that the secreted axon guidance molecule netrin-1 acts in vitro as an attractant and growth promoter for dorsal thalamic axons and is required for the proper development of the TCA projection in vivo. As TCAs approach the hypot...

متن کامل

DSCAM Is a Netrin Receptor that Collaborates with DCC in Mediating Turning Responses to Netrin-1

During nervous system development, spinal commissural axons project toward and across the ventral midline. They are guided in part by netrin-1, made by midline cells, which attracts the axons by activating the netrin receptor DCC. However, previous studies suggest that additional receptor components are required. Here, we report that the Down's syndrome Cell Adhesion Molecule (DSCAM), a candida...

متن کامل

Netrin-1 and DCC Mediate Axon Guidance Locally at the Optic Disc: Loss of Function Leads to Optic Nerve Hypoplasia

Embryonic retinal ganglion cell (RGC) axons must extend toward and grow through the optic disc to exit the eye into the optic nerve. In the embryonic mouse eye, we found that immunoreactivity for the axon guidance molecule netrin-1 was specifically on neuroepithelial cells at the disk surrounding exiting RGC axons, and RGC axons express the netrin receptor, DCC (deleted in colorectal cancer). I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 23  شماره 

صفحات  -

تاریخ انتشار 2002